Cholera toxin adjuvant greatly promotes antigen priming of T cells

Abstract
Cholera toxin (CT) given perorally is a powerful mucosal immunogen and adjuvant. Information that explains the adjuvant effect of CT may be used for the development of more effective oral vaccines and might also contribute to our understanding of the mechanisms involved in regulating mucosal immunity. The present study was undertaken to investigate if CT administered together with keyhole limpet hemocyanin (KLH) would act to promote or inhibit priming of KLH-specific T cells and whether the adjuvant effect of CT is restricted to mucosal immune responses or is a generalized phenomenon due to direct immunomodulating effects of CT. We found that CT adjuvant greatly augmented the effectiveness of a single oral priming immunization with KLH: re-challenge with KLH in vitro 1 week following immunization gave several-fold stronger proliferation in KLH-specific spleen, mesenteric lymph node, Peyer's patch and gut lamina propria T cells from KLH + CT adjuvant as opposed to KLH only-treated mice. Moreover, several-fold stronger cytokine production, i.e. interleukin (IL)-2, IL-4, IL-5, IL-6, IL-10 and interferon-Y accompanied the enhanced proliferative response of T cells from CT adjuvant-treated mice. The adjuvant effect of CT was not restricted to mucosal immune responses but was evident also following a single parenteral immunization with KLH + CT. Limiting dilution analysis revealed that CT adjuvant promoted a 20- to 40-fold increase in the frequency of primed KLH-specific T cells. Phenotypic and functional analyses clearly demonstrated that CT adjuvant primarily enhanced priming of CD4+ rather than CD8+ T cells and the pattern of lymphokine secretion disclosed that CT most probably promoted antigen priming of both Thl and Th2 type of CD4+ T precursor cells.

This publication has 32 references indexed in Scilit: