Biofilm Formation and Interaction with the Surfaces of Gallstones by Salmonella spp

Top Cited Papers
Open Access
Abstract
Salmonellae can exist in an asymptomatic carrier state in the human gallbladder. Individuals with gallstones are more likely to become typhoid carriers, and antibiotic treatments are often ineffectual against Salmonella enterica serovar Typhi in carriers with gallstones. Therefore, we hypothesized that Salmonella spp. form biofilms on the surfaces of gallstones, where the bacteria are protected from high concentrations of bile and antibiotics. A number of methods were utilized to examine biofilm formation on human gallstones and glass coverslips in vitro, including confocal, light, and scanning electron microscopy. In our assays, salmonellae formed full biofilms on the surfaces of gallstones within 14 days and appeared to excrete an exopolysaccharide layer that bound them to the surfaces and to other bacteria. Efficient biofilm formation on gallstones was dependent upon the presence of bile, as a biofilm did not form on gallstones within 14 days in Luria-Bertani broth alone. The biofilms formed by a Salmonella enterica serovar Typhi Vi antigen mutant, as well as strains with mutations in genes that eliminate production of four different fimbriae, were indistinguishable from the biofilms formed by the parents. Mutants with an incomplete O-antigen, mutants that were nonmotile, and mutants deficient in quorum sensing were unable to develop complete biofilms. In addition, there appeared to be selectivity in salmonella binding to the gallstone surface that did not depend on the topology or surface architecture. These studies should aid in the understanding of the Salmonella carrier state, an important but underresearched area of typhoid fever pathogenesis. If the basis of carrier development can be understood, it may be possible to identify effective strategies to prevent or treat this chronic infection.