Magnetically Suspended Centrifugal Blood Pump with a Self Bearing Motor

Abstract
A magnetically suspended centrifugal blood pump with a self bearing motor has been developed for long-term ventricular assistance. A rotor of the self bearing motor is actively suspended and rotated by an electromagnetic field without mechanical bearings. Radial position of the rotor is controlled actively, and axial position of the rotor is passively stable within the thin rotor structure. An open impeller and a semi-opened impeller were examined to determine the best impeller structure. The outer diameter and height of the impeller are 63 and 34 mm, respectively. Both the impellers indicated similar pump performance. Single volute and double volute structures were also tested to confirm the performance of the double volute. Power consumption for levitation and radial displacement of the impeller with a rotational speed of 1,500 rpm were 0.7 W and 0.04 mm in the double volute, while those in the single volute were 1.3 W and 0.07 mm, respectively. The stator of the self bearing motor was redesigned to avoid magnetic saturation and improve motor performance. Maximum flow rate and pressure head were 9 L/min and 250 mm Hg, respectively. The developed magnetically suspended centrifugal blood pump is a candidate for an implantable left ventricular assist device.