Transport gap in side-gated graphene constrictions

Abstract
We present measurements on side-gated graphene constrictions of different geometries. We characterize the transport gap by its width in back-gate voltage and compare this to an analysis based on Coulomb blockade measurements of localized states. We study the effect of an applied side-gate voltage on the transport gap and show that high side-gate voltages lift the suppression of the conductance. Finally we study the effect of an applied magnetic field and demonstrate the presence of edge states in the constriction.