A 2 kbit array of symmetric self-electrooptic effect devices

Abstract
A 64*32 array of symmetric self-electrooptic effect devices, each of which can be operated as a memory element or logic gate, is discussed. The required optical switching energies of the devices were approximately 800 fJ and approximately 2.5 pJ at 6 and 15 V bias, respectively, and the fastest switching time measured was approximately 1 ns. Either state of the devices could be held with continuous or pulsed incident optical signals with an average optical incident power per input beam of approximately 200 nW or less than 1 mW for the entire array. Photocurrent and reflectivity were measured for all 2048 devices. Only one device failed to have the negative resistance required for bistability, and only nine of the devices fell outside a band of +or-20% of the mean. Additionally, over 200 devices in the array were operated in parallel using low-power semiconductor laser diodes.