Abstract
Adenosine is released from the myocardium in response to a decrease in the oxygen supply/demand ratio, as is seen in myocardial ischemia; its protective role is manifested by coronary and collateral vessel vasodilation that increase oxygen supply and by multiple effects that act in concert to decrease myocardial oxygen demand (i.e., negative inotropism, chronotropism, and dromotropism). During periods of oxygen deprivation, adenosine enhances energy production via increased glycolytic flux and can act as a substrate for purine salvage to restore cellular energy charge during reperfusion. Adenosine limits the degree of vascular injury during ischemia and reperfusion by inhibition of oxygen radical release from activated neutrophils, thereby preventing endothelial cell damage, and by inhibition of platelet aggregation. These effects help to preserve endothelial cell function and microvascular perfusion. Long-term exposure to adenosine may also induce coronary angiogenesis.