Brain and Liver Insulin Binding Is Decreased in Zucker Rats Carrying the ’fa’ Gene*

Abstract
Insulin binding was measured in membrane particles prepared from the liver and several brain regions of 4-month-old female Zucker fa/fa (obese), Fa/fa (heterozygous), and Fa/Fa (lean) rats. High affinity insulin binding was decreased in the olfatory bulb of fatty (0.23 pmol bound/mg protein) and heterozygous (0.16 pmol/mg) rats compared with that in the lean controls (0.64 pmol/mg). Total binding was not changed in the cerebral cortex or hypothalamus. High affinity insulin binding was also decreased in the liver of both fatty (0.44 .+-. 0.22 pmol/mg; P < 0.01) and heterozygous (0.75 .+-. 0.35 pmol/mg) animals compared with that in the lean rats (2.10 .+-. 1.55 pmol/mg). This decreased binding is probably not due to down-regulation of receptors in the heterozygous rats, as they do not exhibit the hyperinsulinemia observed in the fatty rats. Rather, our findings suggest that there is a gene-related alteration in insulin binding in Zucker rat, as low binding was observed in rats carrying either one (Fa/fa) or two (fa/fa) doses of the gene. We postulate that this central defect in insulin binding may contribute to inadequate perception of a central insulin feedback signal and to the hyperphagia observed in the obese rats.