Abstract
The tripartite subdivision of lymphocytes into B cells, αβ T cells, and γδ cells has been conserved seemingly since the emergence of jawed vertebrates, more than 450 million years ago. Yet, while we understand much about B cells and αβ T cells, we lack a compelling explanation for the evolutionary conservation of γδ cells. Such an explanation may soon be forthcoming as advances in unraveling the biochemistry of γδ cell interactions are reconciled with the abnormal phenotypes of γδ-deficient mice and with the striking differences in γδ cell activities in different strains and species. In this review, the properties of γδ cells form a basis for understanding γδ cell interactions with antigens and other cells that in turn form a basis for understanding immunoprotective and regulatory functions of γδ cells in vivo. We conclude by considering which γδ cell functions may be most critical.