Cellular and Genetic Analysis of Wound Healing in Drosophila Larvae
Top Cited Papers
Open Access
- 20 July 2004
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Biology
- Vol. 2 (8), e239
- https://doi.org/10.1371/journal.pbio.0020239
Abstract
To establish a genetic system to study postembryonic wound healing, we characterized epidermal wound healing in Drosophila larvae. Following puncture wounding, larvae begin to bleed but within an hour a plug forms in the wound gap. Over the next couple of hours the outer part of the plug melanizes to form a scab, and epidermal cells surrounding the plug orient toward it and then fuse to form a syncytium. Subsequently, more-peripheral cells orient toward and fuse with the central syncytium. During this time, the Jun N-terminal kinase (JNK) pathway is activated in a gradient emanating out from the wound, and the epidermal cells spread along or through the wound plug to reestablish a continuous epithelium and its basal lamina and apical cuticle lining. Inactivation of the JNK pathway inhibits epidermal spreading and reepithelialization but does not affect scab formation or other wound healing responses. Conversely, mutations that block scab formation, and a scabless wounding procedure, provide evidence that the scab stabilizes the wound site but is not required to initiate other wound responses. However, in the absence of a scab, the JNK pathway is hyperinduced, reepithelialization initiates but is not always completed, and a chronic wound ensues. The results demonstrate that the cellular responses of wound healing are under separate genetic control, and that the responses are coordinated by multiple signals emanating from the wound site, including a negative feedback signal between scab formation and the JNK pathway. Cell biological and molecular parallels to vertebrate wound healing lead us to speculate that wound healing is an ancient response that has diversified during evolution.Keywords
This publication has 73 references indexed in Scilit:
- Molecular identification of a danger signal that alerts the immune system to dying cellsNature, 2003
- Wound Healing in the PU.1 Null Mouse—Tissue Repair Is Not Dependent on Inflammatory CellsCurrent Biology, 2003
- Cutaneous Wound HealingNew England Journal of Medicine, 1999
- The Drosophila Jun-N-terminal kinase is required for cell morphogenesis but not for DJun-dependent cell fate specification in the eye.Genes & Development, 1996
- Hemostasis in larvae of Manduca sexta: Formation of a fibrous coagulum by hemolymph proteinsBiochemical and Biophysical Research Communications, 1988
- Wound healing, cell communication, and DNA synthesis during imaginal disc regeneration in DrosophilaDevelopmental Biology, 1988
- Characterization and cloning of fasciclin III: A glycoprotein expressed on a subset of neurons and axon pathways in DrosophilaCell, 1987
- Wound healing in the imaginal discs of DrosophilaDevelopmental Biology, 1977
- Fusion of macrophages following simultaneous attempted phagocytosis of glutaraldehyde‐fixed red cellsThe Journal of Pathology, 1977
- Functional Significance of the Crystal Cells in the Larva of Drosophila melanogaster The Journal of cell biology, 1959