Light Scattering, Atomic Force Microscopy and Fluorescence Correlation Spectroscopy Studies of Polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) Micelles

Abstract
Polymeric nanoparticles formed by triblock copolymer polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide), PS-PVP-PEO, in aqueous media were studied by a combination of fluorescence correlation spectroscopy with other fluorescence techniques, light scattering and atomic force microscopy. The studied polymeric nanoparticles exist in the form of (i) core/shell micelles in acid solution at pH lower than 4.8 and (ii) three-layer onion micelles at higher pH. Since water is a very strong precipitant for PS, both types of micelles have kinetically frozen spherical PS cores. The cores of micelles in acid media are surrounded by soluble shells formed by partly protonated PVP and PEO, while the cores of micelles in alkaline media are surrounded by compact insoluble layers of deprotonated PVP and soluble PEO shells. The micellization behavior of PS-PVP-PEO micelles is accompanied by secondary aggregation of micelles, which is provoked by stirring, shaking and also by filtration of micellar solutions. Therefore fluorescence correlation spectroscopy (FCS), which, in contrast to light scattering techniques, does not require filtration, was used as the main experimental technique for the characterization of non-aggregated micelles. The binding of a fluorescence probe, octadecylrhodamine B (ORB), to polymeric micelles, was studied before the FCS study of micelles.

This publication has 47 references indexed in Scilit: