A study of P2X1 receptor function in murine megakaryocytes and human platelets reveals synergy with P2Y receptors

Abstract
We have examined the role of ATP-dependent P2X(1) receptors in megakaryocytes (MKs) and platelets using receptor-deficient mice and selective agonists. Alpha,beta-meATP- and ATP- evoked ionotropic inward currents were absent in whole-cell recordings from MKs of P2X(1)(-/-) mice, demonstrating that the P2X receptor phenotype in MKs, and by inference, platelets, is due to expression of homomeric P2X(1) receptors. P2X(1) receptor deficiency had no effect on MK (CD 41) numbers or size distribution, showing that it is not essential for normal MK development. P2Y receptor-stimulated [Ca(2+)](i) responses were unaffected in MKs from P2X(1)(-/-) mice, however the inward cation current associated with Ca(2+) release was reduced by approximately 50%, suggesting an interaction between the membrane conductances activated by P2X(1) and P2Y receptors. Interaction between P2X(1) and P2Y receptors in human platelets was also examined using [Ca(2+)](i) recordings from cell suspensions. Alpha,beta-meATP (10 microM) evoked a rapid transient P2X(1) receptor-mediated increase in [Ca(2+)](i), whereas ADP-(10 microM) evoked P2Y receptor responses were slower, peaked at a higher level and remained elevated for longer periods. Co-application of alpha, beta-meATP and ADP resulted in marked acceleration and amplification of the peak [Ca(2+)](i) response. We conclude that ionotropic P2X(1) receptors may play a priming role in the subsequent activation of metabotropic P2Y receptors during platelet stimulation.