Investigation of the Lorentz gas in terms of periodic orbits

Abstract
The diffusion constant and the Lyapunov exponent for the spatially periodic Lorentz gas are evaluated numerically in terms of periodic orbits. A symbolic description of the dynamics reduced to a fundamental domain is used to generate the shortest periodic orbits. Applied to a dilute Lorentz gas with finite horizon, the theory works well, but for the dense Lorentz gas the convergence is hampered by the strong pruning of the admissible orbits.

This publication has 5 references indexed in Scilit: