GIV is a nonreceptor GEF for Gαi with a unique motif that regulates Akt signaling
- 3 March 2009
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 106 (9), 3178-3183
- https://doi.org/10.1073/pnas.0900294106
Abstract
Heterotrimeric G proteins are molecular switches that control signal transduction. Ligand-occupied, G protein-coupled receptors serve as the canonical guanine nucleotide exchange factors (GEFs) that activate heterotrimeric G proteins. A few unrelated nonreceptor GEFs have also been described, but little or nothing is known about their structure, mechanism of action, or cellular functions in mammals. We have discovered that GIV/Girdin serves as a nonreceptor GEF for Gαi through an evolutionarily conserved motif that shares sequence homology with the synthetic GEF peptide KB-752. Using the available structure of the KB-752·Gαi1 complex as a template, we modeled the Gαi-GIV interface and identified the key residues that are required to form it. Mutation of these key residues disrupts the interaction and impairs Akt enhancement, actin remodeling, and cell migration in cancer cells. Mechanistically, we demonstrate that the GEF motif is capable of activating as well as sequestering the Gα-subunit, thereby enhancing Akt signaling via the Gβγ-PI3K pathway. Recently, GIV has been implicated in cancer metastasis by virtue of its ability to enhance Akt activity and remodel the actin cytoskeleton during cancer invasion. Thus, the novel regulatory motif described here provides the structural and biochemical basis for the prometastatic features of GIV, making the functional disruption of this unique Gαi-GIV interface a promising target for therapy against cancer metastasis.Keywords
This publication has 31 references indexed in Scilit:
- Activation of Gαi3 triggers cell migration via regulation of GIVThe Journal of cell biology, 2008
- An Actin-Binding Protein Girdin Regulates the Motility of Breast Cancer CellsCancer Research, 2008
- Coactivation of G Protein Signaling by Cell-Surface Receptors and an Intracellular Exchange FactorCurrent Biology, 2008
- Small Molecule Disruption of G Protein βγ Subunit Signaling Inhibits Neutrophil Chemotaxis and InflammationMolecular Pharmacology, 2007
- Metastatic Potential of 21T Human Breast Cancer Cells Depends on Akt/Protein Kinase B ActivationCancer Research, 2007
- Akt1 governs breast cancer progression in vivoProceedings of the National Academy of Sciences, 2007
- RETRACTED: Structural basis for nucleotide exchange on Gα i subunits and receptor coupling specificityProceedings of the National Academy of Sciences, 2007
- Perturbations of the AKT signaling pathway in human cancerOncogene, 2005
- Characterization of the Gαs Regulator Cysteine String ProteinJournal of Biological Chemistry, 2005
- The ins and outs of lysophosphatidic acid signalingBioEssays, 2004