Abstract
Protamines are arginine-rich proteins that replace histones and bind sperm DNA during spermatogenesis in vertebrates. Previous studies have shown that protamine exons evolve faster than does the protamine intron. It has been suggested that this is a result of a relaxation of functional constraint. However, a more likely explanation is that the evolutionary rate of exons has been accelerated by positive Darwinian selection, because introns are generally believed to evolve in a neutral fashion. Therefore, we examined the possibility that positive selection has been acting on the protamine genes of three groups of placental mammals: primates (hominoids and Old World monkeys), rodents (mice, rats, and guinea pigs), and pecoran ruminants (deer and bovids). We found that the nucleotide substitution rate at nonsynonymous sites is significantly higher than the rate at synonymous and intron sites for protamine P1 of hominoids and Old World monkeys. This result suggests that positive selection has been operating on protamine P1 of these species. In contrast, no clear-cut evidence of positive selection was found for protamine P1 of ruminants and rodents or protamine P2 of primates. The agent of positive selection on primate protamine P1 remains unknown, though sperm competition is a possibility. Further investigations on the function and intraspecific polymorphism of this protein are needed in order to identify the selection agent.