Tumor-Specific Urinary Matrix Metalloproteinase Fingerprinting: Identification of High Molecular Weight Urinary Matrix Metalloproteinase Species

Abstract
Purpose: We have previously reported that matrix metalloproteinases MMP-2, MMP-9, and the complex MMP-9/NGAL can be detected in urine of patients with a variety of cancers including prostate and bladder carcinoma. In addition, we also detected several unidentified urinary gelatinase activities with molecular weights >125 kDa. The objective of the current study was to identify these high molecular weight (HMW) species, determine their potential as predictors of disease status, and ask whether a tumor-specific pattern existed based on urinary MMP analysis. Experimental Design: Chromatography, zymography, and mass spectrometry was used to identify HMW gelatinase species of ∼140, 190, and >220 kDa in urine of cancer patients. To determine whether a tumor-specific pattern of appearance existed among the MMPs detected, we analyzed the urine of 189 patients with prostate or bladder cancer and controls. Results: The ∼140, >220 kDa, and ∼190 HMW gelatinase species were identified as MMP-9/tissue inhibitor of metalloproteinase 1 complex, MMP-9 dimer, and ADAMTS-7, respectively. The frequency of detection of any MMP species was significantly higher in urine from prostate and bladder cancer groups than controls. MMP-9 dimer and MMP-9 were independent predictors for distinguishing between patients with prostate and bladder cancer (P < 0.001 for each) by multivariable analysis. Conclusions: This study is the first to identify a tumor-specific urinary MMP fingerprint that may noninvasively facilitate identification of cancer presence and type. This information may be of diagnostic and prognostic value in the detection and/or clinical monitoring of disease progression and therapeutic efficacy in patients with bladder or prostate cancer.