In the recent past, there has been an explosion of probiotic health-based products. Many reports indicated that there is poor survival of probiotic bacteria in these products. Further, the survival of these bacteria in the human gastro-intestinal system is questionable. Providing probiotic living cells with a physical barrier against adverse environmental conditions is therefore an approach currently receiving considerable interest. The technology of micro-encapsulation of probiotic bacterial cells evolved from the immobilised cell culture technology used in the biotechnological industry. Several methods of micro-encapsulation of probiotic bacteria have been reported and include spray drying, extrusion, emulsion and phase separation. None of these reported methods however, has resulted in the large numbers of shelf-stable, viable probiotic bacterial cells necessary for use in industry for development of new probiotic products. The most commonly reported micro-encapsulation procedure is based on the calcium-alginate gel capsule formation. Kappa-carrageenan, gellan gum, gelatin and starch are also used as excipients for the micro-encapsulation of probiotic bacteria. The currently available equipment for micro-encapsulation is not able to generate large quantities of uniform sized micro or nano capsules. There is a need to design and develop equipment that will be able to generate precise and uniform micro or nano capsules in large quantities for industrial applications. The reported food vehicles for delivery of encapsulated probiotic bacteria are yoghurt, cheese, ice cream and mayonnaise. Studies need to be done on the application of micro-encapsulation of probiotic bacteria in other food systems. The number of probiotic supplements will increase in the future. More studies, however, need to be conducted on the efficacy of micro-encapsulation to deliver probiotic bacteria and their controlled or targeted release in the gastrointestinal tract.