Improving protein therapeutics with sustained-release formulations

Abstract
Although numerous protein therapeutics have been approved or are in advanced clinical testing, the development of more sophisticated delivery systems for this rapidly expanding class of therapeutic agents has not kept pace. The short in vivo half-lives, the physical and chemical instability, and the low oral bioavailability of proteins currently necessitate their administration by frequent injections of protein solutions. This problem can be overcome by use of injectable depot formulations in which the protein is encapsulated in, and released slowly from, microspheres made of biodegradable polymers. Although the first report of sustained release of a microencapsulated protein was more than 20 years ago, the instability of proteins in these dosage forms has prevented their clinical use. Advances in protein stabilization, however, have allowed development of sustained-release forms of several therapeutic proteins, and clinical testing of a monthly formulation human growth hormone is currently in progress. The obvious advantage of this method of delivery is that the protein is administered less frequently, sometimes at lower overall doses, than when formulated as a solution. More importantly, it can justify commercial development of proteins that, for a variety of reasons, could not be marketed as solution formulations.