Influence of coronary perfusion and myocardial edema on pressure-volume diagram of left ventricle

Abstract
Pressure-volume diagrams of paced, isolated hearts were derived from isovolumic contractions and auxotonic contractions (simultaneous changes of pressure and volume). Coronary perfusion, fluid accumulation in heart muscle, and left ventricular volume and pressure were measured and controlled. Pressure-volume diagrams from isovolumic and auxotonic contractions were virtually identical in the same heart and were influenced by the same factors to a similar degree. At equal diastolic volumes the magnitude of systolic, as well as of diastolic pressures, and the occurrence of a systolic descending limb were directly related to coronary perfusion pressure. At equal diastolic volumes, other factors being constant, myocardial edema did not influence the contractile strength (i.e., maximum contractile tension development) of a ventricle, but did decrease its distensibility (i.e., increase diastolic pressure) in proportion to fluid accumulation. Myocardial water content and coronary factors (coronary arterial and venous pressures, coronary blood volume and flow) therefore constitute intrinsic mechanisms which can regulate the performance of a ventricle by changing its contractile strength, its distensibility, or both. The effects of coronary factors and of myocardial edema on the distensibility of a ventricle are sufficient in magnitude to explain hemodynamic abnormalities which characterize certain types of congestive heart failure.