Residual Stress Development in the Injection Molding of Polymers

Abstract
Injection molding is one of the most widely employed methods for the fabri- cating of polymer articles, being characterized by high production rates and accurately dimensioned products. The process includes the flow of polymer melt through a runner system and gates followed by injection into a cold mold, packing under high pressure, and subsequent cooling to solidification. Accordingly, during the injection-molding process the polymer undergoes simultaneous mechanical and therma! influences while in fluid, rubbery, and glassy states. Such effects introduce residual stresses and strains into the final product [1,2], resulting in highly anisotropic mechanical behavior [3–9] and warpage and shrinkage [10–13]. Thus, understanding the factors governing the residual-stress development during molding is of great importance.