Back-Propagation Neural Network in Tidal-Level Forecasting

Abstract
Reliability of tidal-level forecasting is essential for structure installation and human activities in the marine environment. This paper reports an application of the artificial neural network with back-propagation procedures for accurate forecast of tidal-level variations. Unlike the conventional harmonic analysis, this neural network model forecasts the time series of tidal levels directly using a learning process based on a set of previous data. Two sets of field data with diurnal and semidiurnal tide, respectively, were used to test the performance of the neural network model. Results indicate that the hourly tidal levels over a long duration can be efficiently predicted using only a very short-term hourly tidal record.

This publication has 9 references indexed in Scilit: