The effect of membrane‐fluidizing agents on the adhesion of CHO cells

Abstract
Treatment of CHO cells with drugs which are known to increase membrane lipid fluidity reduced the cells' ability to adhere to protein coated substrates. The concentrations of local anesthetics, nonionic detergents or aliphatic alcohols required to reduce CHO cell adhesion by 50% were similar to those reported to block nerve conduction, indicating that these drugs can affect the membrane at physiologically significant concentrations. Nonionic detergents and aliphatic alcohols, but not local anesthetics, caused increases in the fluidity of CHO plasma membranes (measured by fluorescence polarization) at concentrations which inhibited cell adhesion. The adhesion versus temperature profile had a sigmoidal shape, suggesting that a temperature dependent cooperative process such as a lipid phase transition, might be involved. However, the temperature profile for CHO membrane fluidity manifested no discontinuities, indicating the absence of any discrete phase transitions of the lipid matrix. This observation, coupled with the result that the inhibition of CHO cell adhesion produced by low temperatures was not relieved by drugs which can increase membrane fluidity, suggests that the reduced adhesion seen at low temperature is probably not due to reduced lipid fluidity.