Scavenging of the cofactor lipoate is essential for the survival of the malaria parasite Plasmodium falciparum
Open Access
- 8 January 2007
- journal article
- Published by Wiley in Molecular Microbiology
- Vol. 63 (5), 1331-1344
- https://doi.org/10.1111/j.1365-2958.2007.05592.x
Abstract
Lipoate is an essential cofactor for key enzymes of oxidative metabolism. Plasmodium falciparum possesses genes for lipoate biosynthesis and scavenging, but it is not known if these pathways are functional, nor what their relative contribution to the survival of intraerythrocytic parasites might be. We detected in parasite extracts four lipoylated proteins, one of which cross-reacted with antibodies against the E2 subunit of apicoplast-localized pyruvate dehydrogenase (PDH). Two highly divergent parasite lipoate ligase A homologues (LplA), LipL1 (previously identified as LplA) and LipL2, restored lipoate scavenging in lipoylation-deficient bacteria, indicating that Plasmodium has functional lipoate-scavenging enzymes. Accordingly, intraerythrocytic parasites scavenged radiolabelled lipoate and incorporated it into three proteins likely to be mitochondrial. Scavenged lipoate was not attached to the PDH E2 subunit, implying that lipoate scavenging drives mitochondrial lipoylation, while apicoplast lipoylation relies on biosynthesis. The lipoate analogue 8-bromo-octanoate inhibited LipL1 activity and arrested P. falciparum in vitro growth, decreasing the incorporation of radiolabelled lipoate into parasite proteins. Furthermore, growth inhibition was prevented by lipoate addition in the medium. These results are consistent with 8-bromo-octanoate specifically interfering with lipoate scavenging. Our study suggests that lipoate metabolic pathways are not redundant, and that lipoate scavenging is critical for Plasmodium intraerythrocytic survival.Keywords
This publication has 70 references indexed in Scilit:
- Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival inToxoplasma gondiiProceedings of the National Academy of Sciences, 2006
- Toxoplasma gondii scavenges host-derived lipoic acid despite its de novo synthesis in the apicoplastThe EMBO Journal, 2006
- Identification ofBurkholderia pseudomalleiGenes Required for the Intracellular Life Cycle and In Vivo VirulenceInfection and Immunity, 2006
- Crystal Structure of Lipoate-Protein Ligase A from Escherichia coliJournal of Biological Chemistry, 2005
- Genome of the Host-Cell Transforming Parasite Theileria annulata Compared with T. parvaScience, 2005
- Retention of CD44 introns in bladder cancer: Understanding the alternative splicing of pre‐mRNA opens new insights into the pathogenesis of human cancersThe Journal of Pathology, 1995
- CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Research, 1994
- α-Lipoate Can Protect Against Glycation of Serum Albumin, But Not Low-Density LipoproteinBiochemical and Biophysical Research Communications, 1994
- Studies on the Nature of Protein-bound Lipoic AcidJournal of the American Chemical Society, 1960