Logarithmic Corrections to the Molecular-Field Behavior of Critical and Tricritical Systems

Abstract
The asymptotic critical form of thermodynamic functions is analyzed by means of renormalization-group techniques. If certain exponent relations are satisfied, then the critical behavior is not described by a simple power law, but a power law multiplied by a fractional power of a logarithm. The approach is applied to two special systems whose critical exponents are molecular-field-like. (i) For ordinary critical transitions in four dimensions we find the same logarithmic factors previously computed by Larkin and Khmel'nitskii. (ii) For tricritical transitions in three dimensions we compute the logarithmic corrections to the molecularfield tricritical behavior discussed in an earlier publication.