Abstract
The pressure of liquid water at normal density is obtained by molecular dynamics simulations based on four intermolecular potential functions derived from quantum chemical calculations of the water dimer; Matsuoka–Clementi–Yoshimine, Carravetta–Clementi, Clementi–Habitz, Yoon–Morokuma–Davidson. Among them, the Carravetta–Clementi potential gives the most reasonable temperature-dependence of pressure, although the absolute value is large compared with the experimental one. The fluid state is surveyed over a wide range of temperature and density with the Carravetta–Clementi potential. The equation of state of fluid water is determined by a least-square fitting of the calculated energies and pressures at 347 state points. The anomalous properties of liquid water observed experimentally are nonempirically reproduced on a semiquantitative level. The calculated equation of state of liquid water is consistent with the Speedy–Angell conjecture on the limit of stability of the liquid phase.