New Methodology for Computer-Aided Modelling of Biomolecular Structure and Dynamics 1. Non-Cyclic Structures

Abstract
A general methodology is proposed for the conformational modelling of biomolecular systems. The approach allows one: (i) to describe the system under investigation by an arbitrary set of internal variables, i.e., torsion angles, bond angles, and bond lengths; it offers a possibility to pass from the free structure to a completely fixed one with the number of variables from 3N to zero, respectively, where N is the number of atoms; (ii) to consider both, a single molecule and a complex of many molecules, (e.g., proteins, water, ligands, etc.) in terms of one universal model; (iii) to study the dynamics of the system using explicit analytical Lagrangian equations of motion, thus opening up possibilities for investigations of slow concerted motions such as domain oscillations in proteins etc.; (iv) to calculate the partial derivatives of various functions of conformation, e.g., the conformatinal energy or external constraints imposed, using a standard efficient procedure regardless of the variables and the structure of the system. The approach is meant to be used in various investigations concerning the conformations and dynamics of biomacromolecules.