Abstract
Calassical demographic methods applied to life history data on the northern spotted owl yield and estimate of the annual geometric rate of increase for the population of λ=0.96±0.03, which is not significantly different from that for a stable population (λ=1.00). Sensitivity analysis indicates that adult annual survivorship has by far the largest influence on λ, followed by the probability that juveniles survive dispersal, and the adult annual fecundity. Substantial temporal fluctuations in demographic parameters have little effect on the long-run growth rate of the population because of the long adult life expectancy. A model of dispersal and territory occupancy that assumes demographic equilibrium is evaluated using data on the amount of old forest habitat remaining in the Pacific Northwest and the current occupancy of this habitat by northern spotted owls. This model is employed to predict the effect of future habitat loss and fragmentation on the population, implying that extinction will result if the old forest is reduced to less than a proportion 0.21±0.02 of the total area in a large region. The estimated minimum habitat requirement for the population is greater than that allowed in management plants by the USDA Forest Service.