Abstract
Physical characteristics of rubber network structures usually enumerated and discussed are network chain density, crosslink functionality, average chain length between crosslinks, entanglements which act somewhat like crosslinks, and free chain ends which are network defects. Chemical factors include structure of the chain molecules, type of crosslinks, whether monosulfide, disulfide or polysulfide, or direct carbon-to-carbon bonds. Side effects of vulcanization reactions such as chain scission or combination of minor quantities of chemical fragments from the vulcanizing system are also recognized. One might think that these variables would be adequate to account for physical properties of elastomers but explanations of strength aspects of vulcanizates are still unsatisfactory. Something is missing in these considerations, that is, the distribution of crosslinks along a main chain or the length sequences of monomer units in network chains. Usually a random distribution is implicitly assumed. If the distribution is always random and nothing can be done about it and it cannot be measured anyway, there may seem to be little point in writing about it. However, an ideally random distribution for all crosslinking systems and polymers seems very improbable. The importance of network chain length distribution for physical properties has been, of course, well recognized in theory. Bueche's calculations showed that viscoelastic resistance to deformation increased markedly with increased crosslink functionality, that is, as more chains are involved in the displacement of a crosslink. His molecular theory of tensile strength was based on the concept of short, overloaded network chains which snapped and transferred their loads to neighboring chains. An alternate point of view is that short chains are detrimental because they do not stress orient as well as longer chains.