Abstract
There are now twelve heat flow measurements in the Red Sea made with heat flow probes from survey ships and several sets of temperature measurements made in deep exploration boreholes. The oceanic measurements are in water depths ranging from 0.94 to 2.70 km and all but one of these measurements give values significantly higher than the world mode of 46 mW m$^{-2}$ (1.1). They include the world record high oceanic measurement of more than 3307 mW m$^{-2}$ (79.0) in the neighbourhood of the hot brine pools. These measurements show that the deep axial trough of the Red Sea is associated with high heat flow, the values being similar to those found in the mid-Indian Ocean rift, the mid-Atlantic rift and over the crest of the East Pacific rise. It is of considerable interest to see if there is also high heat flow over the Red Sea margins and the main purpose of this paper is to examine temperature data from deep exploration boreholes. The boreholes are drilled mainly in rock salt, sandstones and shales. A discussion is given of the thermal conductivities assumed for these rocks. The boreholes have depths of up to 4 km and in some cases the temperature measurements enable an estimate to be made of the heat flow. These are also found to be high. The significance of the high heat flow to ideas concerning the structure and evolution of the Red Sea is discussed.

This publication has 2 references indexed in Scilit:

  • 97
    Medicine & Science in Sports & Exercise, 2009
  • Interior Design
    Aircraft Engineering and Aerospace Technology, 1967