Accurate Motion of a Robot End-Effector Using the Curvature Theory of Ruled Surfaces

Abstract
In robotics, there are two methods of trajectory planning: the joint interpolation method which is appropriate for fast transition of the robot end-effector; and the cartesian interpolation method which is appropriate for slower motion of the end-effector along straight path segments. Neither method, however, is sufficient to allow a smooth, differentiable, transition of position and orientation of the end-effector. In this paper, we propose a method of trajectory planning that will permit more accurate motion of a robot end-effector. The method is based on the curvature theory of a ruled surface generated by a line fixed in the end-effector, referred to as the tool line. The orientation of the end-effector about the tool line is included in the analysis to completely describe the six degree-of-freedom motion of the end-effector. The linear and angular properties of motion of the end-effector, determined from the differential properties of the ruled surface, are utilized in the trajectory planning.