Abstract
Poisson's ratio strains in the adherends of a simple adhesive lap joint induce transverse stresses both in the adhesive and in the adherends. Two simultaneous second-order partial-differential equations were set up to describe the normal stresses along and across an adherend and were solved both by an approximate analytical method and a finite-difference technique: the two solutions agreed closely. The adhesive shear stresses can then be obtained by differentiating these solutions. The transverse shear stress has a maximum value for metals of about one-third of the maximum longitudinal shear stress, and this occurs at the corners of the lap, thus making the corners the most highly stressed parts of the adhesive. Bonding adherends of dissimilar stiffness was shown to produce greater stress concentrations in the adhesive than when similar adherends are used.

This publication has 2 references indexed in Scilit: