Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis

Abstract
This study evaluates the sensitivity of winter precipitation to numerous aspects of a bulk, mixed-phase microphysical parameterization found in three widely used mesoscale models [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), the Rapid Update Cycle (RUC), and the Weather Research and Forecast (WRF) model]. Sensitivities of the microphysics to primary ice initiation, autoconversion, cloud condensation nuclei (CCN) spectra, treatment of graupel, and parameters controlling the snow and rain size distributions are tested. The sensitivity tests are performed by simulating various cloud depths (with different cloud-top temperatures) using flow over an idealized two-dimensional mountain. The height and width of the two-dimensional barrier are designed to reproduce an updraft pattern with extent and magnitude consistent with documented freezing-drizzle cases. By increasing the moisture profile to saturation at low temperatures, a deep, ... Abstract This study evaluates the sensitivity of winter precipitation to numerous aspects of a bulk, mixed-phase microphysical parameterization found in three widely used mesoscale models [the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), the Rapid Update Cycle (RUC), and the Weather Research and Forecast (WRF) model]. Sensitivities of the microphysics to primary ice initiation, autoconversion, cloud condensation nuclei (CCN) spectra, treatment of graupel, and parameters controlling the snow and rain size distributions are tested. The sensitivity tests are performed by simulating various cloud depths (with different cloud-top temperatures) using flow over an idealized two-dimensional mountain. The height and width of the two-dimensional barrier are designed to reproduce an updraft pattern with extent and magnitude consistent with documented freezing-drizzle cases. By increasing the moisture profile to saturation at low temperatures, a deep, ...