High-Yielding Aqueous 18F-Labeling of Peptides via Al18F Chelation

Abstract
The coordination chemistry of a new pentadentate bifunctional chelator (BFC), NODA-MPAA 1, containing the 1,4,7-triazacyclononane-1,4-diacetate (NODA) motif with a methylphenylacetic acid (MPAA) backbone, and its ability to form stable Al18F chelates were investigated. The organofluoroaluminates were easily accessible from the reaction of 1 and AlF3. X-ray diffraction studies revealed aluminum at the center of a slightly distorted octahedron, with fluorine occupying one of the axial positions. The tert-butyl protected prochelator 7, which can be synthesized in one step, is useful for coupling to biomolecules on solid phase or in solution. High yield (55–89%) aqueous 18F-labeling was achieved in 10–15 min with a tumor-targeting peptide 4 covalently linked to 1. Defluorination was not observed for at least 4 h in human serum at 37 °C. These results demonstrate the facile application of Al18F chelation using BFC 1 as a versatile labeling method for radiofluorinating other heat-stable peptides for positron emission imaging.