Microbial community structure in the North Pacific ocean
- 23 July 2009
- journal article
- research article
- Published by Oxford University Press (OUP) in The ISME Journal
- Vol. 3 (12), 1374-1386
- https://doi.org/10.1038/ismej.2009.86
Abstract
We report a ribosomal tag pyrosequencing study of the phylogenetic diversity of Archaea, Bacteria and Eucarya over a depth profile at the Hawaii Ocean Time-Series Station, ALOHA. The V9 region of the SSU rRNA gene was amplified from samples representing the epi- (10 m), meso- (800 m) and bathy- (4400 m) pelagia. The primers used are expected to amplify representatives of ∼80% of known phylogenetic diversity across all three domains. Comparisons of unique sequences revealed a remarkably low degree of overlap between communities at each depth. The 444 147 sequence tags analyzed represented 62 975 unique sequences. Of these, 3707 (5.9%) occurred at two depths, and only 298 (0.5%) were observed at all three depths. At this level of phylogenetic resolution, Bacteria diversity decreased with depth but was still equivalent to that reported elsewhere for different soil types. Archaea diversity was highest in the two deeper samples. Eucarya observations and richness estimates are almost one order of magnitude higher than any previous marine microbial Eucarya richness estimates. The associations of many Eucarya sequences with putative parasitic organisms may have significant impacts on our understanding of the mechanisms controlling host population density and diversity, and point to a more significant role for microbial Eucarya in carbon flux through the microbial loop. We posit that the majority of sequences detected from the deep sea that have closest matches to sequences from non-pelagic sources are indeed native to the marine environment, and are possibly responsible for key metabolic processes in global biogeochemical cycles.Keywords
This publication has 47 references indexed in Scilit:
- A single-cell view on the ecophysiology of anaerobic phototrophic bacteriaProceedings of the National Academy of Sciences, 2008
- The Molecular Diversity of Freshwater Picoeukaryotes Reveals High Occurrence of Putative Parasitoids in the PlanktonPLOS ONE, 2008
- Metagenomics of the Deep Mediterranean, a Warm Bathypelagic HabitatPLOS ONE, 2007
- Accuracy and quality of massively parallel DNA pyrosequencingGenome Biology, 2007
- Pyrosequencing enumerates and contrasts soil microbial diversityThe ISME Journal, 2007
- The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical PacificPLoS Biology, 2007
- Synthetic Statistical Approach Reveals a High Degree of Richness of Microbial Eukaryotes in an Anoxic Water ColumnApplied and Environmental Microbiology, 2006
- Microbial diversity in the deep sea and the underexplored “rare biosphere”Proceedings of the National Academy of Sciences, 2006
- Biological robustnessNature Reviews Genetics, 2004
- Basic Local Alignment Search ToolJournal of Molecular Biology, 1990