Synthesis of Heat Shock Proteins in Rat Brain Cortex after Transient Ischemia

Abstract
Summary: Cell-free protein synthesis and two-dimensional gel autoradiography were used to characterize early postischemic protein synthesis in rat neocortex. Severe forebrain ischemia was induced for 30 min (four-vessel occlusion model) and followed by 3 h of recirculation. Polysomes were isolated from the cerebral cortex, translated in vitro in a reticulocyte system, and analyzed by two-dimensional gel electrophoresis. The translation products of postischemic polysomes included a major new protein family (70 kDa) with multiple isoelectric variants that was found to comigrate with the 68- to 70kDa “heat shock” protein synthesized from polysomes of hyperthermic rats. Two other stress proteins (93 and 110 kDa) also appeared to be synthesized in increased amounts after ischemia. A complement of proteins that was indistinguishable from that of controls was also synthesized after ischemia, indicating that messenger ribonucleic acid coding for most brain proteins is preserved after ischemia and is bound to polysomes.