A Conserved Biogenesis Pathway for Nucleoporins: Proteolytic Processing of a 186-Kilodalton Precursor Generates Nup98 and the Novel Nucleoporin, Nup96
Open Access
- 22 March 1999
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 144 (6), 1097-1112
- https://doi.org/10.1083/jcb.144.6.1097
Abstract
The mammalian nuclear pore complex (NPC) is comprised of approximately 50 unique proteins, collectively known as nucleoporins. Through fractionation of rat liver nuclei, we have isolated >30 potentially novel nucleoporins and have begun a systematic characterization of these proteins. Here, we present the characterization of Nup96, a novel nucleoporin with a predicted molecular mass of 96 kD. Nup96 is generated through an unusual biogenesis pathway that involves synthesis of a 186-kD precursor protein. Proteolytic cleavage of the precursor yields two nucleoporins: Nup98, a previously characterized GLFG-repeat containing nucleoporin, and Nup96. Mutational and functional analyses demonstrate that both the Nup98-Nup96 precursor and the previously characterized Nup98 (synthesized independently from an alternatively spliced mRNA) are proteolytically cleaved in vivo. This biogenesis pathway for Nup98 and Nup96 is evolutionarily conserved, as the putative Saccharomyces cerevisiae homologues, N-Nup145p and C-Nup145p, are also produced through proteolytic cleavage of a precursor protein. Using immunoelectron microscopy, Nup96 was localized to the nucleoplasmic side of the NPC, at or near the nucleoplasmic basket. The correct targeting of both Nup96 and Nup98 to the nucleoplasmic side of the NPC was found to be dependent on proteolytic cleavage, suggesting that the cleavage process may regulate NPC assembly. Finally, by biochemical fractionation, a complex containing Nup96, Nup107, and at least two Sec13- related proteins was identified, revealing that a major sub-complex of the NPC is conserved between yeast and mammals.Keywords
This publication has 65 references indexed in Scilit:
- Nup116p and Nup100p are interchangeable through a conserved motif which constitutes a docking site for the mRNA transport factor Gle2pThe EMBO Journal, 1998
- Identification of Protein p270/Tpr as a Constitutive Component of the Nuclear Pore Complex–attached Intranuclear FilamentsThe Journal of cell biology, 1997
- A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex.The Journal of cell biology, 1996
- RNP Export is Mediated by Structural Reorganization of the Nuclear Pore BasketJournal of Molecular Biology, 1996
- The Nuclear Pore Complex and Lamina: Three-dimensional Structures and Interactions Determined by Field Emission In-lens Scanning Electron MicroscopyJournal of Molecular Biology, 1996
- Nup145p is required for nuclear export of mRNA and binds homopolymeric RNA in vitro via a novel conserved motifCell, 1994
- Novel proteases with unusual specificitiesCurrent Opinion in Cell Biology, 1992
- Architecture and design of the nuclear pore complexCell, 1992
- Identification of a receptor for protein import into mitochondriaNature, 1990
- Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex components.The Journal of cell biology, 1990