Glycerol stabilizes the triple-helical structure of solubilized calf skin collagen. The equilibrium melting temperature of the protein increased linearly from 38.0 degrees C in AS buffer (0.01 M NaOAc and 0.02 M NaCl, pH 4.0) to 43.0 degrees C in AS and 6 M glycerol buffer. To understand the thermodynamic basis of this effect on the equilibrium melting temperature and the glycerol inhibition of collagen self-association, the preferential interactions of native and denatured calf skin collagens in AS buffer containing 1.5, 3, and 4.5 M glycerol were measured with a precision densimeter. The results indicated that native collagen binds glycerol preferentially whereas denatured collagen neither binds nor repels glycerol. The preferential binding of glycerol by native collagen, when interpreted in terms of the three-component solution thermodynamics, suggests that the surface interaction of native collagen with glycerol is energetically more favorable than its interaction with water. By use of the Wyman linked function, the negative chemical potential change of collagen derived from its preferential binding of glycerol can account for both the glycerol stabilization of the triple-helical structure of collagen and the inhibition of in vitro self-association of monomers into fibrils.