The effect of corneal thickness and corneal curvature on pneumatonometer measurements

Abstract
Purpose. The purpose of this study was to investigate the influence of corneal topography and thickness on intraocular pressure (IOP) and pulse amplitude (PA) as measured using the Ocular Blood Flow Analyzer (OBFA) pneumatonometer (Paradigm Medical Industries, Utah, USA). Methods. 47 university students volunteered for this crosssectional study: mean age 20.4 yrs, range 18 to 28 yrs; 23 male, 24 female. Only the measurements from the right eye of each participant were used. Central corneal thickness and mean corneal radius were measured using Scheimpflug biometry and corneal topographic imaging respectively. IOP and PA measurements were made with the OBFA pneumatonometer. Axial length was measured using A-scan ultrasound, due to its known correlation with these corneal parameters. Stepwise multiple regression analysis was used to identify those components that contributed significant variance to the independent variables of IOP and PA. Results. The mean IOP and PA measurements were 13.1 (SD 3.3) mmHg and 3.0 (SD 1.2) mmHg respectively. IOP measurements made with the OBFA pneumatonometer correlated significantly with central corneal thickness (r = +0.374, p = 0.010), such that a 10 µm change in CCT was equivalent to a 0.30mmHg change in measured IOP. PA measurements correlated significantly with axial length (part correlate = –0.651, p < 0.001) and mean corneal radius (part correlate = +0.459, p < 0.001) but not corneal thickness. Conclusions. IOP measurements taken with the OBFA pneumatonometer are correlated with corneal thickness, but not axial length or corneal curvature. Conversely, PA measurements are unaffected by corneal thickness, but correlated with axial length and corneal radius. These parameters should be taken into consideration when interpreting IOP and PA measurements made with the OBFA pneumatonometer.