Gene Expression Classification of Colon Cancer into Molecular Subtypes: Characterization, Validation, and Prognostic Value
Top Cited Papers
Open Access
- 21 May 2013
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Medicine
- Vol. 10 (5), e1001453
- https://doi.org/10.1371/journal.pmed.1001453
Abstract
Colon cancer (CC) pathological staging fails to accurately predict recurrence, and to date, no gene expression signature has proven reliable for prognosis stratification in clinical practice, perhaps because CC is a heterogeneous disease. The aim of this study was to establish a comprehensive molecular classification of CC based on mRNA expression profile analyses. Fresh-frozen primary tumor samples from a large multicenter cohort of 750 patients with stage I to IV CC who underwent surgery between 1987 and 2007 in seven centers were characterized for common DNA alterations, including BRAF, KRAS, and TP53 mutations, CpG island methylator phenotype, mismatch repair status, and chromosomal instability status, and were screened with whole genome and transcriptome arrays. 566 samples fulfilled RNA quality requirements. Unsupervised consensus hierarchical clustering applied to gene expression data from a discovery subset of 443 CC samples identified six molecular subtypes. These subtypes were associated with distinct clinicopathological characteristics, molecular alterations, specific enrichments of supervised gene expression signatures (stem cell phenotype–like, normal-like, serrated CC phenotype–like), and deregulated signaling pathways. Based on their main biological characteristics, we distinguished a deficient mismatch repair subtype, a KRAS mutant subtype, a cancer stem cell subtype, and three chromosomal instability subtypes, including one associated with down-regulated immune pathways, one with up-regulation of the Wnt pathway, and one displaying a normal-like gene expression profile. The classification was validated in the remaining 123 samples plus an independent set of 1,058 CC samples, including eight public datasets. Furthermore, prognosis was analyzed in the subset of stage II–III CC samples. The subtypes C4 and C6, but not the subtypes C1, C2, C3, and C5, were independently associated with shorter relapse-free survival, even after adjusting for age, sex, stage, and the emerging prognostic classifier Oncotype DX Colon Cancer Assay recurrence score (hazard ratio 1.5, 95% CI 1.1–2.1, p = 0.0097). However, a limitation of this study is that information on tumor grade and number of nodes examined was not available. We describe the first, to our knowledge, robust transcriptome-based classification of CC that improves the current disease stratification based on clinicopathological variables and common DNA markers. The biological relevance of these subtypes is illustrated by significant differences in prognosis. This analysis provides possibilities for improving prognostic models and therapeutic strategies. In conclusion, we report a new classification of CC into six molecular subtypes that arise through distinct biological pathways. Please see later in the article for the Editors' Summary Cancer of the large bowel (colorectal cancer) is the third most common cancer in men and the second most common cancer in women worldwide. Despite recent advances in the screening, diagnosis, and treatment of colorectal cancer, an estimated 608,000 people die every year from this form of cancer—8% of all cancer deaths. The prognosis and treatment options for colorectal cancer depend on five pathological stages (0–IV), each of which has a different treatment option and five year survival rate, so it is important that the stage is correctly identified. Unfortunately, pathological staging fails to accurately predict recurrence (relapse) in patients undergoing surgery for localized colorectal cancer, which is a concern, as 10%–20% of patients with stage II and 30%–40% of those with stage III colorectal cancer develop recurrence. Previous studies have investigated whether there are any possible gene expression profiles (identified through microarray techniques) that can help predict prognosis of colorectal cancer, but so far, there have been no firm conclusions that can aid clinical practice. In this study, the researchers used genetic information from a French multicenter study to identify a standard, reproducible molecular classification based on gene expression analysis of colorectal cancer. The authors also assessed whether there were any associations between the identified molecular subtypes and clinical and pathological factors, common DNA alterations, and prognosis. The researchers used genetic information from a cohort of 750 patients with stage I to IV colorectal cancer who underwent surgery between 1987 and 2007 in seven centers in France. The researchers identified relevant clinical and pathological staging information for each patient from the medical records and calculated recurrence-free survival (the time from surgery to the first recurrence) for patients with stage II or III disease. In the genetic analysis, 566 tumor samples were suitable—443 were used in a discovery set, to create the classification, and the remainder were used in a validation set, to test the classification. The researchers also used information from eight public datasets to validate their findings. Using these methods, the researchers classified the colon cancer samples into six molecular subtypes (based on gene expression data) and, on further analysis and validation, were able to distinguish the main biological characteristics and deregulated pathways associated with each subtype. Importantly, the researchers found that that these six subtypes were associated with distinct clinical and pathological characteristics, molecular alterations, specific gene expression signatures, and deregulated signaling pathways. In the prognostic analysis based on recurrence-free survival, the researchers found that patients whose tumors were classified in one of two clusters (C4 and C6) had poorer recurrence-free survival than the other patients. These findings suggest that it is possible to classify colorectal cancer into six robust molecular subtypes that might help identify new prognostic subgroups and could provide a basis for developing robust prognostic genetic signatures for stage II and III colorectal cancer and for identifying specific markers for the different subtypes that might be targets for future drug development. However, as this study was retrospective and did not include some known predictors of colorectal cancer prognosis, such as tumor grade and number of nodes examined, the significance and robustness of the prognostic classification requires further confirmation with large prospective patient cohorts. Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001453.Keywords
This publication has 35 references indexed in Scilit:
- Comprehensive molecular characterization of human colon and rectal cancerNature, 2012
- Prognostic gene expression signature associated with two molecularly distinct subtypes of colorectal cancerGut, 2011
- A refined molecular taxonomy of breast cancerOncogene, 2011
- Genome-scale analysis of aberrant DNA methylation in colorectal cancerGenome Research, 2011
- The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repairProceedings of the National Academy of Sciences, 2008
- Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancerProceedings of the National Academy of Sciences, 2007
- Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factorsProceedings of the National Academy of Sciences, 2007
- CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancerNature Genetics, 2006
- Molecular Staging for Survival Prediction of Colorectal Cancer PatientsJournal of Clinical Oncology, 2005
- Repeated observation of breast tumor subtypes in independent gene expression data setsProceedings of the National Academy of Sciences, 2003