Fourier-transform evaluation of phase data in spatially phase-biased TV holograms

Abstract
TV holograms for spatial phase stepping are formed with a small angular offset between the object and the reference beams to give a spatial frequency bias to the pattern recorded by the TV camera. It is common to set the bias so that there is a 90° or 120° phase shift between adjacent pixels and to use the irradiance of three or more adjacent pixels to evaluate the phase of the interference. We report the Fourier-transform evaluation of such recordings to obtain their phase data. We also demonstrate the direct calculation of the phase difference between successive recordings without intermediate calculation of the random phase of each hologram. This technique is proposed as an approach to pulsed TV holography.