The helical repeat of double-stranded DNA varies as a function of catenation and supercoiling

Abstract
DNA in the cell is intertwined at several levels: one polynucleotide strand wraps helically around its complement and the double helix is in turn coiled in space. The higher-order intertwining most often takes the form of supercoiling of the helix axis1, but can also be observed as the wrapping of one DNA duplex around another, as in catenation2,3. We have investigated the relationship between intertwining at these three levels, the double helix, supercoiling, and catenation, using an approach that relies on comparative measurements of DNA linking numbers by gel electrophoresis. The method determines both the handedness of DNA catenanes and the change in helical repeat that accompanies catenation-induced supercoiling. For multiply-linked catenated rings of 3.5 kilobase pairs (kb), we conclude that the double helix unwinds by two-thirds of a turn for every right-handed supercoil involved in linking the two circles. Altering the geometry of the catenanes by linking rings of dissimilar size changes the effect of catenation on helical and superhelical parameters. Our experiments used intact DNA rings, but we note that linear DNA molecules, by virtue of their subdivision into closed loops or domains in vivo, can intertwine in the same ways4.