Braid Topologies for Quantum Computation

Abstract
In topological quantum computation, quantum information is stored in states which are intrinsically protected from decoherence, and quantum gates are carried out by dragging particlelike excitations (quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories define world lines in three-dimensional space-time, and the corresponding quantum gates depend only on the topology of the braids formed by these world lines. We show how to find braids that yield a universal set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly promising for experimental realization.