Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins.
Open Access
- 15 March 1997
- journal article
- Published by American Society for Clinical Investigation in Journal of Clinical Investigation
- Vol. 99 (6), 1329-1339
- https://doi.org/10.1172/jci119292
Abstract
In this investigation we have used a mouse model containing certain phenotypic characteristics consistent with asthma and IL-4- and CD40-deficient mice to establish the role of this cytokine and allergen-specific immunoglobulins in the initiation of airways hyperreactivity and morphological changes to the airways in responses to aeroallergen challenge. Sensitization and aerosol challenge of mice with ovalbumin resulted in a severe airways inflammatory response which directly correlated with the induction of extensive airways damage and airways hyperreactivity to beta-methacholine. Inflammatory infiltrates were primarily characterized by the presence of CD4+ T cells and eosinophils. In IL-4-deficient mice, the recruitment of airways eosinophils was impaired, but not abolished in response to aeroallergen. Moreover, the characteristic airways damage and hyperreactivity normally resulting from allergen inhalation were not attenuated. Induction of these structural and functional changes to the airways occurred in the absence of ovalbumin-specific IgE and IgG1, but IgG2a and IgG3 were detected in the sera of IL-4-deficient mice. CD4+ T cells isolated from both wild-type and IL-4-deficient mice given ovalbumin produced significant levels of IL-5 after in vitro stimulation. Treatment of IL-4-deficient mice with anti-IL-5 mAb before aeroallergen challenge abolished blood and airways eosinophilia, lung damage, and airways hyperreactivity. These results indicate that IL-4 is not essential for the development of IL-5-producing CD4+ T cells or for the induction of eosinophilic inflammation and airways damage and hyperreactivity. In response to sensitization and aerosol challenge, CD40-deficient mice did not produce ovalbumin-specific IgE, IgG isotypes, or IgA, and airways inflammation and hyperreactivity were not attenuated. Our results suggest that allergic airways disease can occur via pathways which operate independently of IL-4 and allergen-specific immunoglobulins. Activation of these pathways is intimately associated with IL-5 and eosinophilic inflammation. Such pathways may play a substantive role in the etiology of asthma.This publication has 49 references indexed in Scilit:
- Dissociation of production of interleukin‐4 and interleukin‐5Immunology & Cell Biology, 1996
- Natural Disruption of the Mouse Mast Cell Protease 7 Gene in the C57BL/6 MousePublished by Elsevier ,1996
- IL-5-Deficient Mice Have a Developmental Defect in CD5+ B-1 Cells and Lack Eosinophilia but Have Normal Antibody and Cytotoxic T Cell ResponsesImmunity, 1996
- Allergen-specific IgG1 and IgG3 through Fc gamma RII induce eosinophil degranulation.Journal of Clinical Investigation, 1995
- The immune response to Plasmodium chabaudi malaria in interleukin‐4‐deficient miceEuropean Journal of Immunology, 1994
- Generation and in vivo persistence of polarized Th1 and Th2 memory cellsImmunity, 1994
- Disruption of the murine IL-4 gene blocks Th2 cytokine responsesNature, 1993
- Effect of murine recombinant interleukin-5 on bronchial reactivity in guinea-pigsClinical and Experimental Allergy, 1993
- Predominant TH2-like Bronchoalveolar T-Lymphocyte Population in Atopic AsthmaNew England Journal of Medicine, 1992
- Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airwayJournal of Allergy and Clinical Immunology, 1991