Temperature dependence of the low- and high-frequency Raman scattering from liquid water

Abstract
Low frequency Δν̄=0–350 cm1, Raman intensity data were obtained from liquid water between 3.5 and 89.3 °C using holographic grating double and triple monochromators. The spectra were Bose–Einstein (BE) corrected, I/(1+n), and the total integrated (absolute) contour intensities were treated by an elaboration of the Young–Westerdahl (YW) thermodynamic method, assuming conservation of hydrogen‐bonded (HB) and nonhydrogen‐bonded (NHB=bent and/or stretched, O–H O) nearest‐neighbor O–O pairs. A ΔH°1 value of 2.6±0.1 kcal/mol O–H ⋅⋅⋅ O or 5.2±0.2 kcal/mol H2O (11 kJ/mol O–H ⋅⋅⋅ O, or 22 kJ/mol H2O) resulted for the HB→NHB process. This intermolecular value agrees quantitatively with Raman and infrared ΔH° values from the one‐ and two‐phonon OH‐stretching regions, and from molecular dynamics, depolarized light scattering, neutron scattering, and ultrasonic absorption, thus indicating a common process. A population involving partial covalency of, i.e., charge transfer into, the H ⋅⋅⋅ O units of linear and/or weakly bent hydrogen bonds, O–H ⋅⋅⋅ O; is transformed into a second high energy population involving bent, e.g., 150° or less, and/or stretched, e.g., 3.2 Å, but otherwise strongly cohesive O–H O interactions. All difference spectra from the fundamental OH‐stretching contours cross at the X(Z,X+Z)Y isobestic frequency of 3425 cm1. Also, total integrated Raman intensity decreases occurring below 3425 cm1 with temperature rise were found to be proportional to the total integrated intensity increases above 3425 cm1, indicating conservation among the HB and NHB OH‐stretching classes. From the enthalpy of vaporization of water at 0 °C, and the ΔH°1 of 2.6 kcal/mol O–H ⋅⋅⋅ O, the additional enthalpy, ΔH°2, needed for the complete separation of the NHB O–O nearest neighbors is ∼3.2 kcal/mol O–H ⋅⋅⋅ O or ∼6.4 kcal/mol H2O (13 kJ/mol O–H ⋅⋅⋅ O or 27 kJ/mol H2O). The NHB O–O nearest neighbors are held by forces other than those involving H ⋅⋅⋅ O partial covalency, i.e., electrostatic (multipole), induction, and dispersion forces. The NHB O–O pairs do not appear to produce significant intermolecular Raman intensity because they lack H ⋅⋅⋅O bond polarizability, but the corresponding NHB OH oscillators do contribute weakened Raman intensity above 3425 cm1. An ideal solution thermodynamic treatment employing ΔH°1 =2.6 kcal/mol O–H ⋅⋅⋅ O, the HB mole fraction, and the vapor heat capacity, yielded a very satisfactory specific heat value of 1.1 cal deg1 g1 H2O at 0 °C. The NHB mole fraction, fu, from the YW treatment is negligibly small, 0.06 or less, for t<−50 °C. However, fu increases to 0.16 at 0 °C, and fu≊1 at 1437 °C, where recent shock‐wave Raman measurements indicate loss of all partially covalent, charge transfer hydrogen bonding.

This publication has 58 references indexed in Scilit: