Learning in Neural Networks with Material Synapses

Abstract
We discuss the long term maintenance of acquired memory in synaptic connections of a perpetually learning electronic device. This is affected by ascribing each synapse a finite number of stable states in which it can maintain for indefinitely long periods. Learning uncorrelated stimuli is expressed as a stochastic process produced by the neural activities on the synapses. In several interesting cases the stochastic process can be analyzed in detail, leading to a clarification of the performance of the network, as an associative memory, during the process of uninterrupted learning. The stochastic nature of the process and the existence of an asymptotic distribution for the synaptic values in the network imply generically that the memory is a palimpsest but capacity is as low as log N for a network of N neurons. The only way we find for avoiding this tight constraint is to allow the parameters governing the learning process (the coding level of the stimuli; the transition probabilities for potentiation and depression and the number of stable synaptic levels) to depend on the number of neurons. It is shown that a network with synapses that have two stable states can dynamically learn with optimal storage efficiency, be a palimpsest, and maintain its (associative) memory for an indefinitely long time provided the coding level is low and depression is equilibrated against potentiation. We suggest that an option so easily implementable in material devices would not have been overlooked by biology. Finally we discuss the stochastic learning on synapses with variable number of stable synaptic states.