Quantitation of Depth of Thiopental Anesthesia in the Rat
Open Access
- 1 February 1996
- journal article
- Published by Wolters Kluwer Health in Anesthesiology
- Vol. 84 (2), 415-427.
- https://doi.org/10.1097/00000542-199602000-00021
Abstract
Background In contrast to that of inhalational anesthetics, quantitation of anesthetic depth for intravenous agents has not been well defined. In this study, using rodents, the relationship between the constant plasma thiopental concentrations and the clinical response to multiple nociceptive stimuli were investigated characterizing the anesthetic state from light sedation to deep anesthesia and correlated to the degree of electroencephalogram (EEG) drug effect. Methods Thirty rats were instrumented with chronically implanted EEG electrodes, arterial and venous catheters. A computer-driven infusion pump was used to rapidly attain and then maintain constant, target plasma thiopental concentrations ranging from 7 to 100 micrograms/ml. Three different target plasma thiopental concentrations were achieved in each rat. Electroencephalographic effects were monitored with aperiodic waveform analysis. The following nociceptive stimuli were applied: (1) unprovoked righting reflex, (2) provoked righting reflex, (3) noise stimulus, (4) tail clamping with an alligator clip, (5) constant tail pressure with an analgesiameter, (6) corneal reflex, and (7) tracheal intubation. For tail clamping, tail pressure, and intubation, either purposeful extremity movement or abdominal muscle contraction response was noted to be present or absent. The clinical responses (present or absent) were modeled using logistic regression to estimate the Cp50, the plasma thiopental concentration with a 50% probability of no response. Results The following mean Cp50 values (95% confidence interval) were obtained: unprovoked righting reflex, 15.9 (15.1-16.6) micrograms/ml; provoked righting reflex, 21.4 (20.2-22.7) micrograms/ml; noise stimuli, 31.3 (29.7-33.0) micrograms/ml; tail clamp and limb movement, 38.3 (36.1-40.4) micrograms/ml; tail pressure and limb movement, 39.2 (37.1-41.3) micrograms/ml; tail pressure and abdominal muscle contraction, 52.5 (50.0- 55) micrograms/ml; tail clamping and abdominal muscle contraction, 56.1 (50.0-56.2) micrograms/ml; corneal reflex, 60.0 (56.6-63.4) micrograms/ml; and limb movement or muscle abdominal contraction response to intubation, 67.7 (59.2-76.1) micrograms/ml. At an EEG-effect of 9.1 and 2.2 waves/s, there was a 50% chance of limb movement response to tail clamping and tracheal intubation, respectively. There was a poor relationship between the plasma thiopental concentration and the percent increase of either heart rate or mean arterial blood pressure after applying either tail pressure or tail clamp stimuli. Conclusions A range of nociceptive stimuli and their observed clinical responses can be used to quantitate thiopental anesthetic depth, ranging from light sedation to deep anesthesia (isoelectric EEG and unresponsive to intubation) in the rodent. Clinical response can be mapped to surrogate EEG measures.Keywords
This publication has 24 references indexed in Scilit:
- General Anesthetic ActionAnesthesia & Analgesia, 1993
- ANAESTHESIA: A PRACTICAL OR IMPRACTICAL CONSTRUCT?British Journal of Anaesthesia, 1987
- Plasma Concentrations of Alfentanil Required to Supplement Nitrous Oxide Anesthesia for General SurgeryAnesthesiology, 1986
- Anesthetic Doses Blocking Adrenergic (Stress) and Cardiovascular Responses to Incision—MAC BARAnesthesiology, 1981
- Determination and Applications of MACAnesthesiology, 1980
- End-tidal Halothane Concentration for Endotracheal IntubationAnesthesiology, 1977
- MAC ExpandedAnesthesiology, 1975
- Minimum Alveolar Concentrations (MAC) of Isoflurane with and without Nitrous Oxide in Patients of Various AgesAnesthesiology, 1975
- Minimum Alveolar Concentrations in Man on Awakening from Methoxyflurane, Halothane, Ether and Fluroxene AnesthesiaAnesthesiology, 1970
- Minimum Alveolar Anesthetic ConcentrationAnesthesiology, 1965