Parietal Representation of Symbolic and Nonsymbolic Magnitude
- 1 January 2003
- journal article
- research article
- Published by MIT Press in Journal of Cognitive Neuroscience
- Vol. 15 (1), 47-56
- https://doi.org/10.1162/089892903321107819
Abstract
The close behavioral parallels between the processing of quantitative information conveyed by symbolic and non-symbolic stimuli led to the hypothesis that there exists a common cerebral representation of quantity (Dehaene, Dehaene-Lambertz, & Cohen, 1998). The neural basis underlying the encoding of number magnitude has been localized to regions in and around the intraparietal sulcus (IPS) by brain-imaging studies. However, it has never been demonstrated that these same regions are also involved in the quantitative processing of nonsymbolic stimuli. Using functional brain imaging, we explicitly tested the hypothesis of a common substrate. Angles, lines, and two-digit numbers were presented pairwise, one to the left and one to the right of the fixation point. In the three comparison tasks, participants (n = 18) pressed the key on the side of the largest quantity. In the three control tasks, they indicated the side on which dimming occurred. A conjunction analysis between the three subtractions (comparison task-control task) revealed a site in left IPS that is specifically responsive when two stimuli have to be compared quantitatively, irrespective of stimulus format. The results confirm the hypothesis that quantity is represented by a common mechanism for both symbolic and nonsymbolic stimuli in IPS. In addition, the interaction between task and type of stimulus identified a region anterior to the conjunction site, not specific for quantitative processing, but reflecting general processes loaded by number processing.Keywords
This publication has 25 references indexed in Scilit:
- The Quantitative Nature of a Visual Task Differentiates between Ventral and Dorsal StreamJournal of Cognitive Neuroscience, 2002
- Dissociating Neural Correlates of Cognitive Components in Mental CalculationCerebral Cortex, 2001
- Neuroimaging of cognitive functions in human parietal cortexCurrent Opinion in Neurobiology, 2001
- Sources of Mathematical Thinking: Behavioral and Brain-Imaging EvidenceScience, 1999
- Abstract representations of numbers in the animal and human brainTrends in Neurosciences, 1998
- Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding.Journal of Experimental Psychology: General, 1995
- Spatial registration and normalization of imagesHuman Brain Mapping, 1995
- Is numerical comparison digital? Analogical and symbolic effects in two-digit number comparison.Journal of Experimental Psychology: Human Perception and Performance, 1990
- Mental comparison of size and magnitude: Size congruity effects.Journal of Experimental Psychology: Learning, Memory, and Cognition, 1984
- Comparisons of digits and dot patterns.Journal of Experimental Psychology, 1974