Supersonic unstalled flutter is predicted using an unsteady supersonic cascade analysis, a cascade wind tunnel and a high speed fan rotor. Since the unsteady analysis assumes thin flat plate airfoils, the effect of thickness and blade shape was examined experimentally by flutter testing two sets of supersonic blading in a cascade wind tunnel. The effects of changes in Mach number, reduced frequency, stagger angle and interblade phase angle were examined from the analysis and tests. Results show that the trends are in agreement, but that blade shape has an effect on the level of reduced velocity at the incipient flutter point. The unsteady aerodynamic analysis is applied to two transonic fan stages. The first rotor was designed as a supersonic flutter test vehicle while the second was designed to be flutter free. Results of the fan tests show that the analysis correctly predicts the susceptibility to flutter of each rotor.