Catalysts Deactivation by Coking

Abstract
Catalyst deactivation due to coke formation is an important technological and economic problem in petroleum refining and in the petrochemical industry. Remedies to catalyst deactivation are sought by a variety of strategies involving modification of catalyst surface composition such as the use of polymetallic catalysts and/or by manipulation of the reaction environment which often limits the yield due to thermodynamic constrains (i.e., high hydrogen pressures, etc.). In the limit, when the activity reaches unacceptable limits, regeneration by burning off carbon residues can usually be attained, Regeneration can take place in situ, as in fixed-bed reactors, or in an adjacent reactor to which the catalysts is transported to, such as in moving-bed reactors or in fluidized-bed reactors. In the first case intermittent operation is required, whereas in the second case the operation is continuous, but a second regeneration reactor is required. The choice of the proper process cycle is an economic optimization problem constrained by catalysts cost, operational and regenerational cost, and by the value of the final product [1–5]. Process optimization under catalyst decay is an engineering problem that requires a knowledge of the catalyst deactivation kinetic.