Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG
Top Cited Papers
- 1 January 2000
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Biomedical Engineering
- Vol. 47 (9), 1185-1194
- https://doi.org/10.1109/10.867928
Abstract
Increasing depth of sleep corresponds to an increasing gain in the neuronal feedback loops that generate the low-frequency (slow-wave) electroencephalogram (EEG). The authors derived the maximum-likelihood estimator of the feedback gain and applied it to quantify sleep depth. The estimator computes the fraction (0%-100%) of the current slow wave which continues in the near future (0.02 s later) EEG. Therefore, this percentage was dubbed slow-wave microconfinuity (SW%). It is not affected by anatomical parameters such as skull thickness, which can considerably bias the commonly used slow-wave power (SWP). In the authors' study, both of the estimators SW% and SWP were monitored throughout two nights in 22 subjects. Each subject took temazepam (a benzodiazepine) on one of the two nights, Both estimators detected the effects of age, temazepam, and time of night on sleep. Females were found to have twice the SWP of males, but no gender effect on SW% was found. This confirms earlier reports that gender affects SWP but not sleep depth. Subjectively assessed differences in sleep quality between the nights were correlated to differences in SW%, not in SWP. These results demonstrate that slow-wave microcontinuity, being based on a physiological model of sleep, reflects sleep depth more closely than SWP does.Keywords
This publication has 22 references indexed in Scilit:
- Analysis Of Brain Synchronization, Based On Noise-driven Feedback ModelsPublished by Institute of Electrical and Electronics Engineers (IEEE) ,2005
- Automatic detection of cyclic alternating pattern (CAP) sequences in sleep: preliminary resultsClinical Neurophysiology, 1999
- Electrophysiological correlates of sleep delta wavesElectroencephalography and Clinical Neurophysiology, 1998
- Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivationBrain Research, 1993
- Cerebral information processing estimated by unpredictability of the EEGClinical Neurology and Neurosurgery, 1992
- A simple format for exchange of digitized polygraphic recordingsElectroencephalography and Clinical Neurophysiology, 1992
- A model-based monitor of human sleep stagesBiological Cybernetics, 1987
- An optimal monitor of the electroencephalographic sigma sleep stateBiological Cybernetics, 1985
- Accurate measurement of flash-evoked alpha attenuationElectroencephalography and Clinical Neurophysiology, 1983
- Optimal detection of the alpha state in a model of the human electroencephalogramElectroencephalography and Clinical Neurophysiology, 1981