Ultrahigh field induced strain and polarization response in electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer

Abstract
The influence of electron dosage on the field induced strain, dielectric constant, and polarization response has been investigated in electron irradiated poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) 50/50 copolymer. It was found that under suitable electron dosage an ultrahigh electrostrictive strain can be achieved. Interestingly, material after irradiation exhibits many features resembling those of relaxor ferroelectrics, suggesting that the electron irradiation breaks up the coherent polarization domain in normal ferroelectric P(VDF-TrFE) copolymer into nano-polar regions that transform the material into a relaxor ferroelectric. In addition, many of the material properties including the field induced polarization, the electrostrictive strain, and elastic modulus exhibit irregular change (non-monotonical) with electron dosage, indicating a complex relation among the crosslinking density, crystallinity, crystallite size, and molecular conformation in determining the material responses.